Showing posts with label taxonomy day. Show all posts
Showing posts with label taxonomy day. Show all posts

Friday, March 18, 2016

Taxonomy Day 2016! Museum Collections are the Taxonomist Habitat!


TAXONOMY DAY will soon be upon us!  On March 19th Several years ago, biologist Terry McGlynn declared a DAY FOR APPRECIATING TAXONOMISTS! who had supported his work.

In Biology, Taxonomists are those scientists who IDENTIFY species and work towards classifying and understanding their evolution and "place" in the natural world. Which species is it? The common one? The one we eat? The poisonous one?? 

Much of our understanding of ecosystems and conservation STARTS with knowing which species is which! 



I recently discovered that the  NSF program funding for "Biological Infrastrucutre" aka.. natural history collections has been put on "hiatus" as of this month while it is "being evaluated for the long term resource needs and research priorities in the Biological Sciences Directorate."

If you have FEEDBACK to the "evaluation" for NSF's Collection in Support of Biological Research, please send email to them on the email address located here: https://dbinsfblog.wordpress.com/2016/03/16/csbr-fy17/

So, I don't know anything about the issues surrounding this hiatus BUT I thought that this year for TAXONOMY DAY, it would be a GOOD time to refresh the public as to what services natural history collections perform for both the scientific and "greater good" of society...

As I described in one of my last posts, the Natural History Museum is essentially THE HABITAT for the taxonomist (as well as many other scientists!)

1. Specimen libraries that help us ID and understand biodiversity






















Most people don't realize that behind the exhibit floors of dinosaurs, shells, minerals and other awesome displays there are actually large collections of natural history artifacts- shells, plants, insects, skeletons, and many more specimens of different organisms and mineral specimens from all over the world. Some local, some from very far away.

Just to be clear, these aren't just "stored" to get them out of the way, these specimens are ACTIVELY STUDIED and researched by scientists all around the world. I would say that this is the primary function of natural history museums. They house and care for biological (and in some cases geological and cultural) specimens that serve the scientific community.

Collections like this one are RESEARCH centers for these kinds of natural artifacts. In the context of biology, if you want to know what some Antarctic fanged rotifer looks like? Find the museum with all the Antarctic rotifer specimens and compare yours with professionally identified one in the collection!

If you think you have some kind of fossil that you'd like to check as being from specific stratum of rock? Compare it against the one in the natural history collection!

At one of the museums' I've worked at, they actually have a representative of EVERY phylum of animal! So yeah, you wanna know what a loriciferan is? And finding one isn't convenient? You can go look it up and find it!

Identifying animals, plants, minerals, etc. aka "collection based research" has all sorts of pragmatic applications (note all of these are based on REAL cases):
  • Identifying economically important pests or invasive species
  • Long term environmental monitoring (such as this one in the Gulf of Mexico)
  • Identifying species used in medical research
  • Identifying species with direct economic importance (i.e. corals or shells for jewelry)
  • Geochemical analysis to study past environments
  • Identify toxic/poisonous/venomous species
  • Identifying bird feathers involved in airplane accidents
  • and of COURSE my favorite application of museum research collections: Identifying weird bugs from a crime scene to help locate a murderer! 
Natural history collections and museums are thus part of our "knowledge infrastructure." It is here that we begin to identify many of the organisms around us.. be they animal, plant, fungus, mineral...or "other"..

What makes Natural history collections so critical to taxonomy? This is frequently where  the vouchers or TYPE COLLECTIONS are deposited.
These are specimens that are the original material used by scientists to describe new species. As I've described earlier, these are sort of the "first issue" of a new species. Essentially the voucher showing the original "intent" or concept of a species by its original author

These type specimens are kept for collections of all sorts of plants, animals and fossils in natural history museums all around the world. They allow scientists and other researchers sometimes HUNDREDS of YEARS down the road to confirm what a particular species looked like based on a particular author's description..

Sometimes, this preserved material also retains useful DNA for subsequent extraction and study to understand ancient relationships or other study areas.

2. New Species are Described from Natural History Collections
So, if you remember from the recent Okeanos Explorer dives to the Hawaiian Islands, we saw on several occasions, THIS starfish species. A goniasterid, called Circeaster arandae, was a species I described in 2006! 
BUT When I found it, it was this. A dry specimen that had been sitting on a museum shelf for about 30 years with only a few collection notes. As I've mentioned in prior blog posts, it takes an average of about 21 years for a specimen to go from "shelf" to published description!!

And that doesn't count the time it takes to reach the "shelf"!! Thus, the museum collection plays one critical role in how biologists "find" new species. The natural history collection plays a role in providing a "stage" for a new "actor" (in this case a possible new species) to be discovered!! 

On multiple occasions I've described how I've descried new species from different parts of the world. I've got the new species I've described listed here and I'm up to around 31 of them by now.


Natural history museum collections are a natural place to describe new species because in many instances, you ALREADY have the other species present as a reference species for comparison as well as much of the literature.
So, whether this is just comparing the morphology (i.e., the external or internal appearance) or if you are taking DNA from tissues, museums with their many, MANY other specimens are often critical for such a study.

Once a new species is described. It remains with the museum until one of three things happens: the specimen fades away OR the museum collection fades away OR human society ends.

Either way.. vouchers for species are supposed to be kept "in perpetuity" and that's a LONG time...

I have literally met the 4th generation of descendants of scientists visiting the museum who had specimens deposited in the museum based on work finished in 1846!!!

3. Museum Collections: Where Scientists Gather
In places where collections are present, they serve as a focal point for scientists, politicians, and even activists and other folks to meet. You have the collections that everybody needs in one place. Travel often takes place at the same time (e.g., during the summer or winter when school is out) and before you know it, you've got a workshop or collaboration happening! New projects! New species!

During one of my last visits to Paris, a convergence of about half a dozen scientists from 4 countries led to a workshop on New Caledonian marine biodiversity!

These efforts benefit everyone as folks get their "heads together" to pool data and resources in order to solve bigger problems and to examine big issues in conservation, biology and other related fields.

4. Museums & their Collections are Research/Conservation Hubs
 Another aspect of research that ties directly to the collections: research and database hubs are often associated with museums. It makes sense that as researchers use additional tools, that these will be accordingly part of the modern museum infrastructure. Got the specimen with database information cataloged? Extracting tissue AND keeping track of that information are critical parts of the process.

As part of this whole dynamic, many, MANY government and non-profit organizations hang their hats in and around natural history museums. You've got biodiversity databases and taxonomic information?  Then you've got researchers and others who need to research that information and manage it.

5. Biodiversity Education
The collections motivate and spur a lot of research and research-related activities. But one of the greatest non-research things about natural history collections is their ability to inspire and educate!

Showing people "the real deal" is the often the BEST way to educate. Models and such are nice but when you are able to hold a 450 million year old fossil shell in your hands?  A REAL piece of history???

Plus, you often have scientists and educators who know their way around specimens and are more than happy to share the details and explain in the best way possible??

AND, many, many citizen scientist and natural history fans gather at museums. Many, MANY artists often sit and draw/illustrate specimens in the main display halls of many museums. Many citizen organizations meet at natural history museums..essentially inspired by the collections!!

Collections motivate all of the activities above! But remember that they don't necessarily happen on their own! Sometimes you can take one from column A and one from column B!!

How can you beat that??
So.. SUPPORT your natural history museum and their COLLECTIONS. They play an important role in supporting biology and research.

Even WITHOUT money for research activities, there's a lot of costs that go toward supplies.. labels, boxes, and most importantly trained personnel to help maintain the collections.

Supporting science and biodiversity:  the discovery and understanding of new life on the planet is the mandate of every natural history museum I know of!  Natural History Collections are ESSENTIAL to this. If you can support collections- PLEASE do so!  Happy Taxonomy Day!!

Wednesday, September 17, 2014

Five Surprising Points about Discovering New Species & Taxonomy

Austin H. Clark, first curator of echinoderms at the Smithsonian's NMNH. Also, butterfly enthusiast.
This week, a post about my broader field.. TAXONOMY, evolution and the discovery of new species!

Many of you may or may not realize that, although I am widely studied in echinoderms, my *actual* research focuses on starfish, specifically the diversity of starfish, including the description of new species and how they "fit" into the evolutionary classification of the echinoderms and all other animals.  I've written a bit about the description of new species before (many years ago now) here.  here and here.

Taxonomy is often one of the first things you learn about biology. How do you classify the organism? Plant? Animal?  Phylum? Class? Family? Genus?  Species?
                                               
There are scientists (and citizen scientists) whose entire expertise is devoted to studying a singular group of plants, animals, or "other" (protists, fungi, etc.) just as mine is devoted to studying sea stars.

These scientists, such as myself, discover which species are new, which are known and place them within a broad "family tree" of relationships. It is the ongoing effort of these scientists to document potentially important new species for a variety of reasons. Some have important medical uses, others are economically important.. while others are ecologically important.

Some, such as the recent and mysterious genus Dendrogramma may have broad evolutionary relevance to our understanding of life on Earth.  Or at the very least, might just be some odd, evolutionary novelty which has peaked everyone's curiosity.

New species are exciting! and hold the promise of new knowledge. A new predator?? A living member of an extinct group?? Or perhaps a new species with an unusual adaptation??

This whole process of discovering new species has changed over the years. So, here are some recent discussions/dynamics/opportunities that I find worth mentioning and that might be surprising.

A caveat: the points below are skewed towards what I have experienced and how the broad patterns have relevance to what I've done. So, yeah, plants, fungus and protists are a bit different but much of the essential dynamic remains the same. And yes.. there's undoubtedly some stuff I've left out.

5. There are a LOT of new species left to be found, but are there enough scientists to describe them? (Data from Costello et al. 2013. Science 339: 413-416) and Tancoigne & Dubois 2013. Cladistics 29: 567-570
In 2002, a one month survey of the seabed in New Caledonia found 127,652 specimens and 2,738 species of mollusks. 80% of them were new to science!  

MANY new species await discovery and description. But do we have enough scientists who can do so?? Are we losing that expertise? Is there not enough taxonomy being done to document organisms before extinction overtakes them?? This is part of what is called the "Taxonomic Impediment",i.e. the number of species/taxa described is limited (and possibly declining) relative to their need.  

One interesting contradictory result in answer to this question in the the two recent papers above, is that both of those papers allege that there are MORE taxonomists (people who describe new species and etc.) and MORE papers about new species being published now than there have been in the past.

But then, WHY is there still a perception that there STILL aren't enough taxonomists? And is that expertise decreasing?
Tancoigne & Dubois have argued that essentially, even though there are MORE people working, the problem is BIGGER. And so, we haven't really upped our game so much as we have just "kept up" rather than made a real dent in the problem. Taxonomic inertia rather than momentum.

Remember that there is an urgency to describe the world's biodiversity before it goes extinct. This is the so-called "6th Extinction" or "Holocene Extinction." You can go here to see more about it. 

The question is complex.. but I can tell you that from my experience, I am currently considered one of the only regularly publishing, broadly trained starfish taxonomists/systematists. There are a couple of regional specialists and maybe 3 starfish paleontologists but very few people work on the broad biodiversity of starfishes.  (as I did here in Japan early this year..)
                                
I have a backlog of easily a dozen or more species currently "cued up" in my "immediate projects" list. With many, MANY more waiting my attention. Remember that trip I took to the North Pacific with MBARI?  Almost ALL of the species I found were new! Who knows how many more new species await discovery with more workers in the wings?? So I guess that boils down to the question "Is that enough?" 

There are easily whole phyla of animals for whom there may be all of one or two specialists in the world. Based on what I've read the estimates for undiscovered marine biodiversity, especially for invertebrates is pretty high.  And I can definitely tell you that the number of staff or faculty jobs for invertebrate zoologist/taxonomists is pretty small.

So, yeah.. we're gonna need more taxonomists! But also jobs!

4. Most new species are "found" in museum collections rather than immediately on expeditions.
So, you know how I'm always taking these big trips to Paris, here and here. and Japan? This is because I'm visiting museums which have extensive holdings of deep-sea Indo-Pacific starfishes.

While its certainly true that I go into the field to collect starfishes in remote and exotic places (e.g., Antarctica-see below)
The truth is that many of the new species I've described are found from rooting around through buckets and which looks more like this.
Every time I go back to say, the collections in Paris I can reliably depend on finding several new species.

A paper by Fontaine, Perrard and Bouchet (2012) report on time between museum storage & publication (more on that below) but they review one important point: Most specimens accumulate in museums following collection. Its often a misconception that new species are automatically recognized in the field and whisked away to be instantly described.... (although yes, it does happen..it depends..)

They are often stored in a museum, where they are sorted, preserved and shelved until a scientist can work on them.

How long does that take between museum storage to publication??

3. It takes on average about 21 years for a species to be described from "shelf" to publication
This is something I can verify: A new species can take a LONG time to reach publication. Note this new genus and species from Antarctica I described in 2011. Collection date?? 14 March, 1966!! This was collected 4 years before I was born!! Ha.

The Fontaine et al. paper further sampled researchers from a variety of fields and found that for a variety of disciplines, it took on average about two decades for a new species to be described following collection and museum storage.

There are a LOT of considerations of course.. Some specimens undergo years of study. DNA is extracted. Comparisons are made. Histology is performed. It depends on what kind of work is done.
Some fields have lost their only workers for literally a decade. There was easily a gap for about 10 to 15 years, when there was no one who was "the starfish  expert"until I came along.

2. Taxonomy from Images: Flickr & More!
So, image proliferation on the Internet has started to make a HUGE impact on natural history and taxonomy.

There is now a massive proliferation of images of habitats, organisms, and etc. via MANY different crowd sourced  (e.g., Flickr or Youtube) or other conveniently available resources. For example: screengrabs/twitter pics of the live stream Okeanos Explorer deep-sea feed!
From crowd-sourced photo hosts?  There was THIS famous story on the news in 2012 about an entomologist who discovered a new species of insect on the crowd-sourced photo bank Flickr! 

I've actually spoken to several of my colleagues about whether images they've seen on Flickr or Facebook could be new species and indeed, it is surprising HOW many there are! And why not? People who post their pictures travel all around the world or are in very distant settings. Some with great camera set ups and a good eye. There's a HUGE potential for data mining here with a nearly infinite number of pictures (many are never labelled).
Some might argue that usefulness of pictures remain limited, since no specimen is available for positive identification or vouchering in a museum. But who knows what kind of behavior? or habitat is spied by these videos?

For the deep-sea species.. even seeing the life mode and color is a HUGE step in knowledge over what scientists in the 20th Century, who often worked with a dead, dried specimen. 

1. New Specimens via... Ebay?? 
Back in 2006, Dr. Simon Coppard, a sea urchin taxonomist recovered specimens of a new species of sea urchin, Coelopleurus exquisitus from the online auction website, Ebay! 

This sounds kind of ...unusual, the truth is that scientists and natural historians have been buying exotic shells and items from vendors of "exotic goods" since the 1800s. Many species described from this time period were based on specimens obtained from "Far East" purchases. The Internet auction house puts a 21st Century spin on 19th Century practice.

Fortunately, this species was described in good order and with apparently little hassle (and I can only hope- good locality data!)
I have heard of subsequent "finds" via Ebay and as remarkable as it sounds, there are unusual and rarely encountered animals which sometimes come up for sale as "dried curios" or "seashells" or what have you.  Fossils also.

Relying on vendors isn't a good option relative to a formal expedition or even just a professional scientist collecting on his/her own. MANY issues can be at play. Permits are common place and some specimens may have been illegally collected. Some organisms, such as coral are protected by international regulations. Obtained specimens could be poorly preserved or have incomplete or downright incorrect locality data (i.e., where they were found). But sometimes, it can be another way to discover new biodiversity. Strange but there it is.